

THP-1 cells co-cultured (24h) with 25µg/mL AIO(OH)

Medical Research

Council

MRG

Elucidating upon the cellular uptake of ABA and the Aβ₄₂ peptide 'antigen' in a THP-1 cell line

Dr Matthew Mold

11th Keele Meeting on Aluminium, Lille, France 2015

10th Keele Meeting on Aluminium

Current opinion for a mechanism of aluminium adjuvanticity via cognate B-cell activation and T-cell differentiation. *10th Keele Meeting on aluminium, Winchester 2013*.

Αβ₄₂

- Amyloidogenic peptide generated by sequential proteolytic cleavage of the amyloid precursor protein (APP) via β- and γ-secretases.
- Predominant form found deposited within senile plaques in Alzheimer's disease (AD).
- Effectiveness as use as an antigen highlighted in a transgenic mice model that overexpresses mutant human APP with reductions in AD-like neuropathologies (Schenk et al., 1999).
- Translation into clinical trials and the transport of Aβ from the periphery to the brain remain elusive.
- A recent study has suggested that β-amyloid may be transported from distant locations to the brain as evidenced intracellularly in peritoneal monocytes (Eisele et al., 2014).

Aims and objectives

- Culture of the monocytic T helper 1 (THP-1) cell line and co-culture with clinically approved and experimental adjuvant preparations.
- Section THP-1 cells in the presence and absence of aluminium based adjuvants (ABA) using an **agar-paraffin embedding** protocol.
- Lumogallion was to be investigated as a fluorescent molecular probe for particulate and amorphous ABA preparations (Mold *et al.*, 2014).
- Investigate the use of varying [ABA] and establish their cellular uptake.
- Assessment of the potential **cellular uptake of amyloid** fibrils of $A\beta_{42}$ via use of thioflavin T (ThT).

THP-1 cell culture

Co-culture of THP-1 cells & ABAs

- THP-1 cells re-suspended in R10 to 5×10^5 cells/mL (50,000 per 100µL).
- 100µL 2X [ABA] in R10 added at increasing concentrations to cells.
- 96 well plate format used and plates incubated for 24 h at 37°C + 5% CO₂.

Native THP-1 cells (R10)

Alhydrogel®

2.5 - 100 μg/mL

50µg/mL

100µg/mL

25µg/mL

- Alhydrogel[®] found
 localised in cell
 cytoplasm.
- ABA particles were found internalised in THP-1 cells (*ca* 1.0µm).
- Alhydrogel was found readily internalised at all [ABA]s.
- ABA particulates were also found associated with plasma membranes at 100µg/mL of the adjuvant.

Adju-Phos®

2.5 - 100 μg/mL

100µg/mL

- Adju-Phos[®] found localised in cell cytoplasm only.
- Discreet ABA particles were found internalised in THP-1 cells, however their identification were sometimes difficult.
- Adju-Phos was readily internalised at 2.5 and 25µg/mL of the ABA.
- Uptake less pronounced at 50 and 100µg/mL of the adjuvant.

THP-1 cells & 2.5µgmL⁻¹ Adju-Phos[®], X400mag

Imject[®] Alum

2.5 - 100 μg/mL

2.5µg/mL

*

*

- Imject[®] Alum found localised in cell cytoplasm only.
- ABA particles as large as *ca* 2.0µm were found internalised in THP-1 cells.
- Imject[®] Alum was found internalised at 2.5 – 50µg/mL of the ABA.
- Uptake less pronounced at 100µg/mL of the adjuvant.

Al₂O₃ nanoparticles

THP-1 cells & **50µgmL**⁻¹ Al₂O₃, X1000mag

ABA & Aβ₄₂ co-culture

- THP-1 cells re-suspended in R10 to 5×10^5 cells/mL (50,000 per 100µL).
- 100µL 2X [ABA / $A\beta_{42}$] in R10 added following **24 h** incubation (37°C).
- 96 well plate format used and plates incubated for 24 h at 37°C + 5% CO_{2.}

Aβ₄₂ *ca* 2.5µg aged **5 days** (37°C), X1000mag

80µM ThT stained (24 h)

Native THP-1 cells, X1000mag, Fluoromount[™]

WBV

Autofluorescence (24 h)

Native THP-1 cells, X1000mag, DAPI

Alhydrogel[®] & Aβ₄₂

Adju-Phos[®] & Aβ₄₂

Conclusions

- For the two **clinically approved** Alhydrogel[®] and Adju-Phos[®] ABA, **intracellular** particulates were observed localised in cell cytoplasm only.
- Only co-culture with Adju-Phos[®] resulted in the release of extracellular genetic material.
- The experimental Imject[®] Alum ABA also exhibited particulates localised in the cell cytoplasm of THP-1 cells, typically larger in size.
- Higher [ABA] showed reduced cellular uptake (50 & 100µg/mL Adju-Phos[®] and 100µg/mL Imject[®] Alum).
- LM analyses of Al₂O₃ nanoparticles suggested their internalisation in **both** cell cytoplasm and cell nuclei.

Conclusions

- Autofluorescence from native THP-1 cells produced a green fluorescence emission.
- Co-culture of THP-1 cells with $A\beta_{42}$ stained with ThT produced an enhanced **blue-green** fluorescence emission.
- Unequivocal identification of internalised $A\beta_{42}$ in THP-1 cells using ThT however has thus far not been possible due to a predominantly green fluorescence emission from native THP-1 cells only, stained under identical conditions.

Future work

- Optimise **ThT staining protocol** for the unequivocal identification of $A\beta_{42}$ in a THP-1 cell line.
- Optimise Aβ₄₂ concentrations and ageing of the amyloidogenic peptide for inclusion in THP-1 cell co-cultures.
- Assess the use of **Congo red** for the visualisation of potentially internalised $A\beta_{42}$.
- Investigate the cellular uptake of ABA and $A\beta_{42}$ investigated herein using resin-embedding and **transmission electron microscopy** (especially useful for identification of potentially internalised AI_2O_3 nanoparticles).

Future work

- Optimise **ThT staining protocol** for the unequivocal identification of $A\beta_{42}$ in a THP-1 cell line.
- Optimise Aβ₄₂ concentrations and ageing of the amyloidogenic peptide for inclusion in THP-1 cell co-cultures.
- Assess the use of **Congo red** for the visualisation of potentially internalised $A\beta_{42}$.
- Investigate the cellular uptake of ABA and $A\beta_{42}$ investigated herein using resin-embedding and **transmission electron microscopy** (especially useful for identification of potentially internalised Al_2O_3 nanoparticles).
- Differentiate THP-1 cells into monocyte derived macrophages using phorobol 12-myristate 13-acetate and assess cellular uptake of the ABA investigated herein and their potential localisation with cellular organelles.

References

- EISELE, Y., FRITSCHI, S., HAMAGUCHI, T. *et al.*, Multiple factors contribute to the peripheral induction of cerebral β-amyloidosis. 2014. *The Journal of Neuroscience*, **34**, 10264-10273.
- EXLEY, C., SIESJÖ, P. & ERIKSSON, H. 2010. The immunobiology of aluminium adjuvants: how do they really work? 2010. *Trends in Immunology*, **31**, 103-109.
- MOLD, M., ERIKSSON, H., SIESJÖ, P., DARABI, A., SHARDLOW, E., EXLEY C. 2014. Unequivocal identification of intracellular aluminium adjuvant in a monocytic THP-1 cell line. 2014. *Scientific Reports*, 4, 6287.
- REED, S. G., ORR, M. T. & FOX, C. B. 2013. Key roles of adjuvants in modern vaccines. *Nature Medicine*, **19**, 1597-1608.
- SCHENK, D., BARBOUR, R., DUNN., W. *et al.*, Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. 1999. *Nature*, **400**, 173-177.

Acknowledgements

Funding:

Medical Research Council UK (MRC)

Bioinorganic chemistry of AI and Si research group:

- Prof Christopher Exley
- Emma Shardlow & Iulia Neagu

Swedish collaborators:

- Prof Håkan Eriksson
- Prof Peter Siesjö
- Dr Anna Darabi (Assistant Prof.)
- Dr Edward Visse
- Emma Sandén
- Dr David Mazzocchi Jones
- Dr Helen Price
- Karen Walker (EM unit)

Medical Research

Council

MRC